

State aid program
evaluation
Experience sharing
from the Investment
for the future
program

Marie-Laure Nauleau
ADEME
EPATEE Workshop
Paris 3/10/2017

Introduction to the Investment for the Future Program led by ADEME (1/3)

Governmental program launched in **2010** to

- Foster innovation in environment and energy
- Share public & private technical & marketing risks of innovative technologies and services

Low carbon energies

Wind energy

Solar energy

Marine renewable energies

Geothermal energy

Hydrogen

Smart grids

Energy storage

CO₂ capture and storage

Eco-efficient building sector

Eco-efficient industrial process

Bio-based chemistry

Waste treatment

Water treatment

Sites and soil decontaminantion

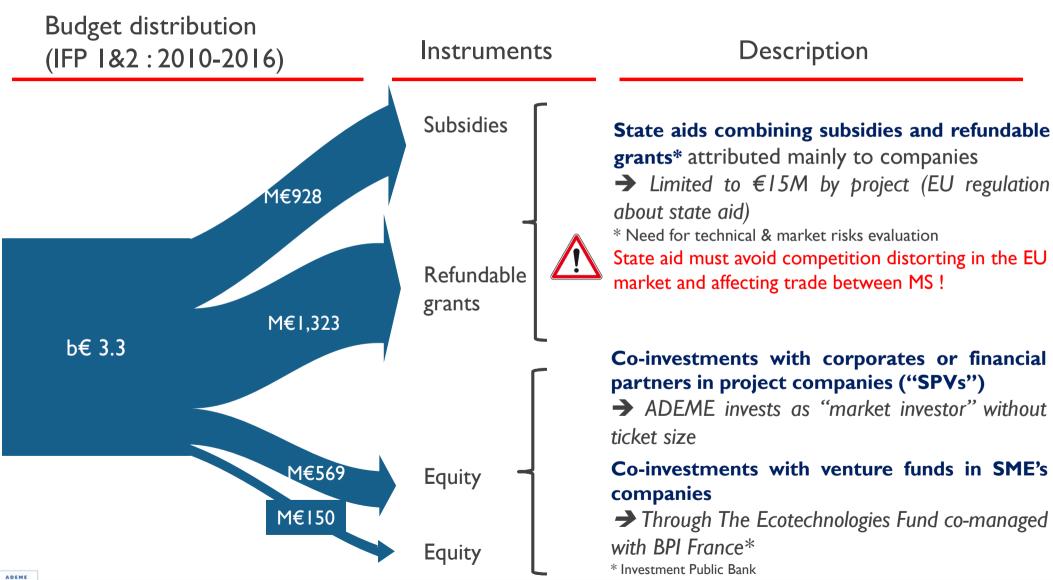
Biodiversity

Transport for the Future

Electric vehicles

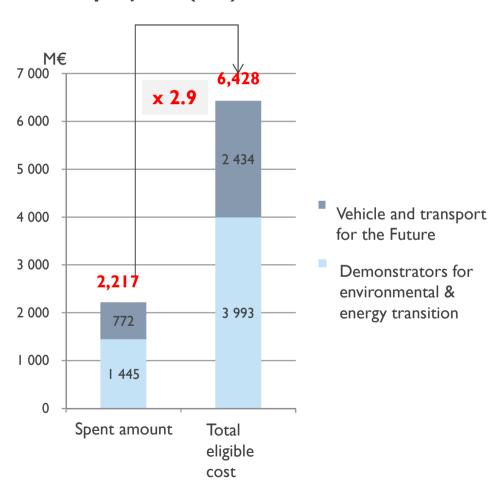
Thermal and hybride engines

Vehicles weight reducing


Heavy vehicles

Logistic and mobility

Rail transport


Future ships

Introduction to the Investment for the Future Program led by ADEME (2/3)

Introduction to the Investment for the Future Program led by ADEME (3/3)

Spent amounts and total costs of awarded projects (M€) in March 2017

A massive support to innovation

- 603 awarded projects
- I,433 funding contracts
- A large potential spillover effects on the rest of the economy

Significant amounts fo each instrument

- M€ 1,699 of State aids
- M€ 431 of capital investment with the direct intervention of ADEME
- M€ 88 invested within the «Ecotechnologies Fund »

Ex-post evaluation of the « ADEME IFP », a long run process

Starting point

Evaluation expected by ADEME and CGI right from the origination of the program

Mandatory Evaluation: EU obligation for large State aid program (annual expenses ≥150 M€)

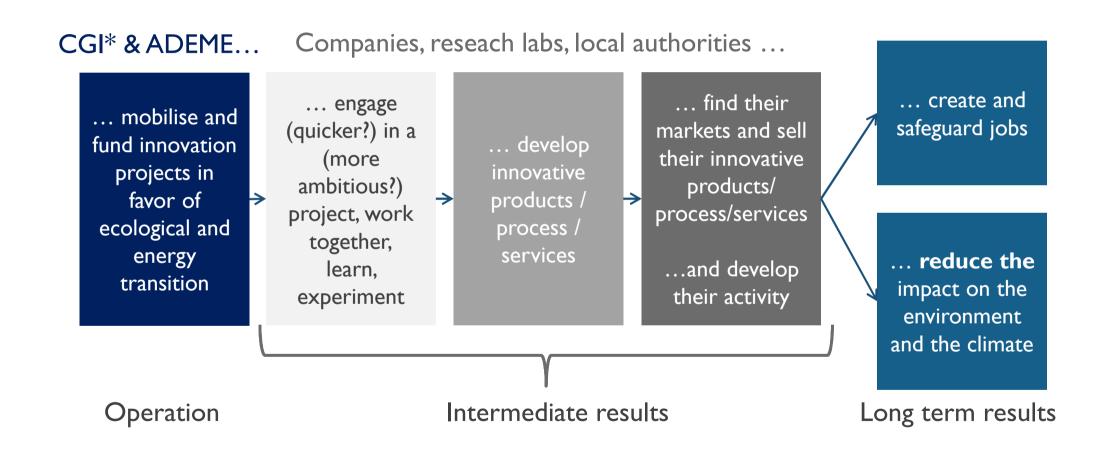
Steps

I- Evaluation preparation

Submission of a draft evaluation plan to the EC (DGCOMP) for approval

- A. « Econometric Evaluation» based on statistical modelling (DG COMP guidelines)
- B. « Qualitative Evaluation» based on survey methods and qualitative explanations

2- Methods development & test


- A. Methodology selection for the econometric study & modelling (feasibility study in 2016)
- B. Development of an operational methodology for the « Qualitative Evaluation » : test on a small sample (31 projects) current evaluation : a sample of 56 ended projects (= 300 firms)

3- Final studies and results dissemination

June, 30th 2020 → transmission of evaluations results to the EC

Identified effects all along the causal chain

^{*}The General Investment Commission is the governmental structure steering the program.

Key evaluation approaches

1. Relevancy - To what extent was the program suitable to the identified needs?

- Relevancy of the general objectives to the stakes (quality of the initial diagnosis)
- Relevancy of the type of support (refundable grants vs subsidies, amounts, conditions, time schedule)

2. Effectiveness - To what extent the program produced the expected effects (results and impacts)?

- Mobilization of the actors and durability of partnerships
- Trigger and/or amplifier effect regarding innovation
- Emergence of new sectors
- Development of activities and job creation
- Impact on the environment and the climate

3. Efficiency - Were the effects produced at a reasonable cost?

- Cost-effectiveness of the program
- Financial returns

Discussion on comparative analysis of evaluation mechanisms

«Qualitative » evaluation : Economical, social and environmental impacts assessment

Principle:

Create a **counterfactual** based on a **reference scenario** in order to identify what would have happened in the absence of the ADEME IFP program.

Results are built on:

- multi-steps process (e.g. preliminary workshop to define the relevant reference scenario and innovation perimeter)
- ✓ self-declaration
- ✓ subsample controlled by experts

Several indicators are studied

- ✓ Economical impact : Turnover evolution on the innovation perimeter due to ADEME IFP (Major Indicator)
- ✓ Social impact : Number of jobs evolution on the innovation perimeter due to ADEME IFP (Major Indicator)
- ✓ Environmental impact : Reduction of carbon emissions due to ADEME IFP (Major Indicator)

"Econometric evaluation"

- Objective: evaluate the causal impacts of the scheme :
- direct impacts : private R&D expenses, R&D success in innovation
- indirect impacts : employment, turnover
- Focus on firms as beneficiaries and on subsidies
- Proposed method : «Difference-in-difference» combined with matching

To compare the results between subsidied companies and a control sample -> a statistical way to create a counterfactual and to identify the causal effect of the program.

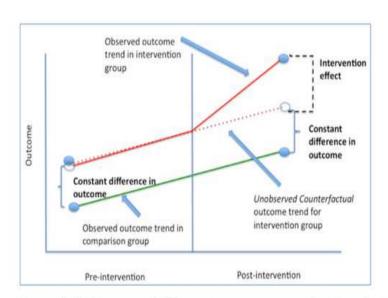


Figure 1. Difference-in-Difference estimation, graphical explanation

Feasibility study:

- Panel data over 2009-2013
 - -Data collected by ADEME (quantitative monitoring)
 - -External administrative database available with a lag (fiscal data, R&D surveys...)
- Initial sample :

3,081 observations (partners × project)

883 projects and 1,492 different partners

Data analysis and database implementation lead to several recommendations to optimize the feasibility of the final evaluation:

E.g.: to avoid observations loss during data matching (mainly due to firm ID changes)

Conclusion & perspectives (I)

Two **complementary evaluation approaches** based on different strategies to build an appropriate counterfactual in order to identify the impacts of the ADEME IFP program.

	« Qualitative » evaluation	« Econometric » evaluation
Advantages	More ability to understand complex causalityPossibility to build tailored counterfactual	- More « objective »- Use of existing information (less costly)
Limits	Self-declaration (even if challenged)More costly	- Demanding in terms of data availibility (sample size, degree of precision on available data for both treatment and control groups)

Conclusion & perspectives (II)

- Impact of the EC guidelines on ADEME evaluation practices.
- Learning-by-doing process between the conception of selection, monitoring and ex-evaluation tools: the needs in terms of ex-post evaluation should be anticipated at the moment of conception of the selection & monitoring tools.
- Ex-post evaluation feedbacks : an opportunity to create dialogue between different scales in the policy making?
- Explore the environmental externalities of R&D&I programs rules (especially for those based on State Aid) in link with EU energy & climate policies (energy efficiency & energy performance building directives).
- Opportunity to design & evaluate schemes in a global view, and benefit from advantages & drawbacks from the different initiatives (especially regarding data collection & treatment).

Thank you for your attention

Laurence.ouldferhat@ademe.fr et isabelle.sannie@ademe.fr

Appendix

Economical, social and environmental impacts assessment

Economical impact

- **✓** Major Indicator
 - For change: **Turnover evolution on the innovation perimeter** (yearly turnover after the introduction of the innovation if new products directly sold on the market, differential of turnover when the innovation is introduced in a preexisting product + other specific cases)
 - For impact :Turnover evolution * % of change due to IFP
- ✓ Other cases (when projects do not lead to sales)
 - For change: project holders are directly asked how they valuate the innovation benefits
 - Internal invoicing (€)
 - « customer value » (€)
 - Costs reduction (in %)
 - Margin improvement (in %)
 - Market share increase (in %)
 - For impact: valuation evolution * % of change due to IFP

Economical, social and environmental impacts assessment

Social impact

- **✓** Major Indicator
 - For change: number of jobs evolution on the innovation perimeter (yearly number after the introduction of the innovation when a new product is directly sold on the market; differential of jobs number, if the innovation was introduced in a preexisting product)
 - Unit : full time equivalents
 - For impact jobs number evolution in the perimeter * % of change due to IFP

ADEME has developed 3 main methodological approaches applied on the estimation of employment effects of investments in the ecological transition:

- Bottom up approach
- Input-Output analysis
- Computable general equilibrium models

Economical, social and environmental impacts assessment

Environmental impact

- **✓** Major Indicator
 - For change : Reduction of carbon emissions or energy consumption in comparison with a reference solution
 - For impact : Reduction of carbon emissions/energy consumption * % of change due to IFP

NB: for projects funded under rules for State aid for environmental protection and energy (incl. EE measures such as cogeneration and DH & DC) → obligation to size the aid amount by taking into account the additional cost of the supported technology compared to a reference solution

- ✓ Other cases (when innovations lead to other environmental benefits)
 - For change: → project holders directly asked how they valuate the environmental benefits (waste reduction, energy performance improvment, pollutants reduction, resources conservation...)
 - For impact : valuation evolution * % of change due to IFP